Start your project today720.570.6364

References

Abdel-Raouf, K. M. A., Rezgui, R., Stefanini, C., Teo, J. C. M. and Christoforou, N. (2021).

Transdifferentiation of human fibroblasts into skeletal muscle cells: Optimization and assembly into engineered tissue constructs through biological ligands. Biology 10, 539. 10.3390/biology10060539 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Alheib, O., da Silva, L. P., Caballero, D., Pires, R. A., Kundu, S. C., Correlo, V. M. and Reis, R. L. (2021).

Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials 279, 121217. 10.1016/j.biomaterials.2021.121217 [PubMed] [CrossRef] [Google Scholar]

Benarroch, L., Bonne, G., Rivier, F. and Hamroun, D. (2019).

The 2020 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul. Disord. 29, 980-1018. 10.1016/j.nmd.2019.10.010 [PubMed] [CrossRef] [Google Scholar]

Carter, J. C., Sheehan, D. W., Prochoroff, A. and Birnkrant, D. J. (2018

Muscular dystrophies. Clin. Chest Med. 39, 377-389. 10.1016/j.ccm.2018.01.004 [PubMed] [CrossRef] [Google Scholar]

Costantini, M., Testa, S., Mozetic, P., Barbetta, A., Fuoco, C., Fornetti, E., Tamiro, F., Bernardini, S., Jaroszewicz, J., Święszkowski, W.et al. (2017).

Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131, 98-110. 10.1016/j.biomaterials.2017.03.026 [PubMed] [CrossRef] [Google Scholar]

Ebrahimi, M., Lad, H., Fusto, A., Tiper, Y., Datye, A., Nguyen, C. T., Jacques, E., Moyle, L. A., Nguyen, T., Musgrave, B.et al. (2021).

De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater. 132, 227-244. 10.1016/j.actbio.2021.05.020 [PubMed] [CrossRef] [Google Scholar]

Fernández-Costa, J. M., Ortega, M. A., Rodríguez-Comas, J., Lopez-Muñoz, G., Yeste, J., Mangas-Florencio, L., Fernández-González, M., Martin-Lasierra, E., Tejedera-Villafranca, A. and Ramóz-Azcón, J. (2022).

Training-on-a-chip: a multi-organ device to study the effect of muscle exercise on insulin secretion in vitro. Adv. Mater. Technol. 8, 2200873. 10.1002/admt.202200873 [CrossRef] [Google Scholar]

Fernández-Garibay, X., Gómez-Florit, M., Domingues, R. M. A., Gomes, M. E., Fernández-Costa, J. M. and Ramón-Azcón, J. (2022).

Xeno-free bioengineered human skeletal muscle tissue using human platelet lysate-based hydrogels. Biofabrication 14. 10.1088/1758-5090/ac8dc8 [PubMed] [CrossRef] [Google Scholar]

Hernández-Albors, A., Castaño, A. G., Fernández-Garibay, X., Ortega, M. A., Balaguer, J. and Ramón-Azcón, J. (2019).

Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines. Biosens. Bioelectron. X 2, 100025. 10.1016/j.biosx.2019.100025 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Homola, J. (2008).

Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462-493. 10.1021/cr068107d [PubMed] [CrossRef] [Google Scholar]

Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y. and Ingber, D. E. (2010).

Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668. 10.1126/science.1188302 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Khodabukus, A., Madden, L., Prabhu, N. K., Koves, T. R., Jackman, C. P., Muoio, D. M. and Bursac, N. (2019).

Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 198, 259-269. 10.1016/j.biomaterials.2018.08.058 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Kim, W. J. and Kim, G. H. (2020).

3D bioprinting of functional cell-laden bioinks and its application for cell-alignment and maturation. Appl. Mater. Today 19, 100588. 10.1016/j.apmt.2020.100588 [CrossRef] [Google Scholar]

Lopez-Munõz, G. A., Fernández-Costa, J. M. S., Ortega, M. A., Balaguer-Trias, J., Martin-Lasierra, E. and Ramón-Azcón, J. (2021).

Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles. Nanophotonics 10, 4

Agrawal, G., Aung, A. and Varghese, S. (2017).

Skeletal muscle-on-a-chip: An in vitro model to evaluate tissue formation and injury. Chip 17, 3447-3461. 10.1039/C7LC00512A [PMC free article] [PubMed] [CrossRef] [Google Scholar] Alheib, O., da Silva, L. P., Caballero, D., Pires, R. A., Kundu, S. C., Correlo, V. M. and Reis, R. L. (2021). Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials 279, 121217. 10.1016/j.biomaterials.2021.121217 [PubMed] [CrossRef] [Google Scholar]

Bakooshli, M. A., Lippmann, E. S., Mulcahy, B., Iyer, N., Nguyen, C. T., Tung, K., Stewart, B. A., Van Den Dorpel, H., Fuehrmann, T., Shoichet, M.et al. (2019).

A 3d culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife 8, e44530. 10.7554/eLife.44530 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Bentzinger, C. F., Wang, Y. X., Dumont, N. A. and Rudnicki, M. A. (2013).

Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14, 1062-1072. 10.1038/embor.2013.182 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Christensen, R. K., Von Halling Laier, C., Kiziltay, A., Wilson, S. and Larsen, N. B. (2020).

3D printed hydrogel multiassay platforms for robust generation of engineered contractile tissues. Biomacromolecules 21, 356-365. 10.1021/acs.biomac.9b01274 [PubMed] [CrossRef] [Google Scholar]

De Chiara, F., Ferret-Miñana, A., Fernández-Costa, J. M., Senni, A., Jalan, R. and Ramón-Azcón, J. (2022).

Fatty hepatocytes induce skeletal muscle atrophy in vitro: a new 3D platform to study the protective effect of albumin in Non-alcoholic fatty liver. Biomedicines 10, 958. 10.3390/biomedicines10050958 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Dowden, H. and Munro, J. (2019).

Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495-496. 10.1038/d41573-019-00074-z [PubMed] [CrossRef] [Google Scholar]

Fernández-Costa, J. M., Fernández-Garibay, X., Velasco-Mallorquí, F. and Ramón-Azcón, J. (2021).

Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J. Tissue Eng. 12, 2041731420981339. 10.1177/2041731420981339 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Fernández-Garibay, X., Ortega, M. A., Cerro-Herreros, E., Comelles, J., Martínez, E., Artero, R., Fernández-Costa, J. M. and Ramón-Azcón, J. (2021).

Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication 13, 035035. 10.1088/1758-5090/abf6ae [PubMed] [CrossRef] [Google Scholar]

Frontera, W. R. and Ochala, J. (2015).

Skeletal muscle: a brief review of structure and function. Behav. Genet. 45, 183-195. 10.1007/s00223-014-9915-y [PubMed] [CrossRef] [Google Scholar]

García-Lizarribar, A., Fernández-Garibay, X., Velasco-Mallorquí, F., Castaño, A. G., Samitier, J. and Ramon-Azcon, J. (2018).

Composite biomaterials as long-lasting scaffolds for 3D bioprinting of highly aligned muscle tissue. Macromol. Biosci. 18, 1800167. 10.1002/mabi.201800167 [PubMed] [CrossRef] [Google Scholar]

Homola, J. (2003).

Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528-539. 10.1007/s00216-003-2101-0 [PubMed] [CrossRef] [Google Scholar]

Hosseini, V., Ahadian, S., Ostrovidov, S., Camci-Unal, G., Chen, S., Kaji, H., Ramalingam, M. and Khademhosseini, A. (2012).

Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng. Part A 18, 2453-2465. 10.1089/ten.TEA.2012.0181 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Johnson, N. E., Butterfield, R. J., Mayne, K., Newcomb, T., Imburgia, C., Dunn, D., Duval, B., Feldkamp, M. L. and Weiss, R. B. (2021).

Population-based prevalence of myotonic dystrophy type 1 using genetic analysis of statewide blood screening program. Neurology 96, e1045. 10.1212/WNL.0000000000011425 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lopez-Muñoz, G. A., Ortega, M. A., Ferret-Miñana, A., De Chiara, F. and Ramón-Azcón, J. (2020).

Direct and label-free monitoring of albumin in 2D fatty liver disease model using plasmonic nanogratings. Nanomaterials 10, 2520. 10.3390/nano10122520 [PMC free article] [PubMed] [CrossRef] [Google Scholar]