Transdifferentiation of human fibroblasts into skeletal muscle cells: Optimization and assembly into engineered tissue constructs through biological ligands. Biology 10, 539. 10.3390/biology10060539 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials 279, 121217. 10.1016/j.biomaterials.2021.121217 [PubMed] [CrossRef] [Google Scholar]
The 2020 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul. Disord. 29, 980-1018. 10.1016/j.nmd.2019.10.010 [PubMed] [CrossRef] [Google Scholar]
Muscular dystrophies. Clin. Chest Med. 39, 377-389. 10.1016/j.ccm.2018.01.004 [PubMed] [CrossRef] [Google Scholar]
Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131, 98-110. 10.1016/j.biomaterials.2017.03.026 [PubMed] [CrossRef] [Google Scholar]
De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater. 132, 227-244. 10.1016/j.actbio.2021.05.020 [PubMed] [CrossRef] [Google Scholar]
Training-on-a-chip: a multi-organ device to study the effect of muscle exercise on insulin secretion in vitro. Adv. Mater. Technol. 8, 2200873. 10.1002/admt.202200873 [CrossRef] [Google Scholar]
Xeno-free bioengineered human skeletal muscle tissue using human platelet lysate-based hydrogels. Biofabrication 14. 10.1088/1758-5090/ac8dc8 [PubMed] [CrossRef] [Google Scholar]
Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines. Biosens. Bioelectron. X 2, 100025. 10.1016/j.biosx.2019.100025 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462-493. 10.1021/cr068107d [PubMed] [CrossRef] [Google Scholar]
Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668. 10.1126/science.1188302 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 198, 259-269. 10.1016/j.biomaterials.2018.08.058 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3D bioprinting of functional cell-laden bioinks and its application for cell-alignment and maturation. Appl. Mater. Today 19, 100588. 10.1016/j.apmt.2020.100588 [CrossRef] [Google Scholar]
Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles. Nanophotonics 10, 4
Skeletal muscle-on-a-chip: An in vitro model to evaluate tissue formation and injury. Chip 17, 3447-3461. 10.1039/C7LC00512A [PMC free article] [PubMed] [CrossRef] [Google Scholar] Alheib, O., da Silva, L. P., Caballero, D., Pires, R. A., Kundu, S. C., Correlo, V. M. and Reis, R. L. (2021). Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials 279, 121217. 10.1016/j.biomaterials.2021.121217 [PubMed] [CrossRef] [Google Scholar]
A 3d culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife 8, e44530. 10.7554/eLife.44530 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14, 1062-1072. 10.1038/embor.2013.182 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3D printed hydrogel multiassay platforms for robust generation of engineered contractile tissues. Biomacromolecules 21, 356-365. 10.1021/acs.biomac.9b01274 [PubMed] [CrossRef] [Google Scholar]
Fatty hepatocytes induce skeletal muscle atrophy in vitro: a new 3D platform to study the protective effect of albumin in Non-alcoholic fatty liver. Biomedicines 10, 958. 10.3390/biomedicines10050958 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495-496. 10.1038/d41573-019-00074-z [PubMed] [CrossRef] [Google Scholar]
Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J. Tissue Eng. 12, 2041731420981339. 10.1177/2041731420981339 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication 13, 035035. 10.1088/1758-5090/abf6ae [PubMed] [CrossRef] [Google Scholar]
Skeletal muscle: a brief review of structure and function. Behav. Genet. 45, 183-195. 10.1007/s00223-014-9915-y [PubMed] [CrossRef] [Google Scholar]
Composite biomaterials as long-lasting scaffolds for 3D bioprinting of highly aligned muscle tissue. Macromol. Biosci. 18, 1800167. 10.1002/mabi.201800167 [PubMed] [CrossRef] [Google Scholar]
Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528-539. 10.1007/s00216-003-2101-0 [PubMed] [CrossRef] [Google Scholar]
Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng. Part A 18, 2453-2465. 10.1089/ten.TEA.2012.0181 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Population-based prevalence of myotonic dystrophy type 1 using genetic analysis of statewide blood screening program. Neurology 96, e1045. 10.1212/WNL.0000000000011425 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Direct and label-free monitoring of albumin in 2D fatty liver disease model using plasmonic nanogratings. Nanomaterials 10, 2520. 10.3390/nano10122520 [PMC free article] [PubMed] [CrossRef] [Google Scholar]